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Abstract
We study the long-time behaviour and the spatial correlations of a simple
ferromagnetic spin system whose kinetics is governed by a thermal bath
with a time-dependent temperature which is characterized by a given external
relaxation time τ . Exact results are obtained in the framework of the spherical
model in d dimensions. In the paramagnetic phase, the long-time kinetics is
shown to depend crucially on the ratio between τ and the internal equilibration
time τeq. If τ � τeq, the model relaxes rapidly towards an equilibrium state but
there appear transient and spatially oscillating contributions in the spin–spin
correlation function. On the other hand, if τ � τeq the system is clamped and
its time evolution may be delayed with respect to that of the heat bath. For
waiting times s such that τ � s � τeq, a quasi-stationary state is found where
the fluctuation–dissipation theorem does not hold.

PACS numbers: 05.70.Ln, 05.70.Jk, 05.40.+j, 82.20.M

1. Introduction

Non-equilibrium systems generally display specific features which are absent from their
corresponding thermodynamically equilibrated counterparts. For example, consider a many-
body system contained in a thermostat and prepared in some initial state. Then assume that
the temperature of the heat bath is rapidly quenched to a different temperature T1 and the
system is then allowed to evolve freely, with the temperature fixed at T1. In this setting, the
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system under study may show ageing effects, which come from the dynamical breaking of
time-translation invariance, see [1–4] for reviews. Although ageing has been known, for a very
long time, to occur in glassy systems, similar effects have more recently also been observed for
non-disordered spin systems. In simple ferromagnets such as the Ising model, ageing effects
have been studied through the long-time behaviour of two-time correlation and response
functions, see [5] and references therein. In addition, it has been proposed recently that the
well-known dynamical scale invariance, associated with the ageing phenomenon (see e.g.
[1, 2]) in simple ferromagnets, may be generalized towards a larger group of local dynamical
scale transformations [6]. Among other results this theory leads to an explicit prediction
for the time-dependent thermoremanent magnetization which has been confirmed in several
distinct models [7–11].

However, current theoretical studies generally assume that the quench is infinitely rapid,
or in other words that the final temperature T1 is reached immediately. In real experiments,
this condition is often far from being satisfied, see e.g. [12, 13]. It is therefore interesting to
investigate the behaviour of a system coupled to a bath with a time-dependent temperature
T (t). Here, we shall study the long-time behaviour of a system initially prepared in a fully
disordered state and brought at time t = 0 into contact with a thermal bath which evolves
from an initial temperature T0 to a final temperature T1 in a finite or infinite interval of time.
In this paper, we shall study the following form of a time-dependent temperature:

T (t) = T1 + (T0 − T1) exp(−t/τ ) (1.1)

where τ is a given relaxation time which sets an external time scale τext = τ . Certainly,
the long-time behaviour of a statistical system will depend, besides the external time scale
τ , on the internal time scale(s) τint(T ) which arise from the internal self-organization of the
system, governed by the microscopic interactions. Two basic cases should be expected. First,
if τint � τ , the system simply relaxes towards equilibrium at the final temperature T1. On
the one hand, if τint � τ , the system is said to be clamped at the external temperature T (t)

and its time history will depend on the properties of the external heat bath. While for times
t � τ � τint the system should have simply relaxed back to equilibrium, new effects might
be expected to occur in the regime τ � t � τint and this may allow us to distinguish between
these two cases. The time-dependence as specified in equation (1.1) should contain the basic
ingredients which are needed for a conceptual understanding of this kind of phenomenon6.

One of the central questions is whether/when under the conditions just described the
system may evolve towards thermodynamic equilibrium. A convenient way to measure the
distance of a system from equilibrium is through the fluctuation–dissipation ratio [15, 16]

X(t, s) = T R (t, s)

(
∂C(t, s)

∂s

)−1

(1.2)

where C(t, s) and R(t, s) are the two-time autocorrelation and autoresponse functions,
respectively (see section 2 for the precise definitions). At equilibrium, the fluctuation–
dissipation theorem states that X(t, s) = 1. Therefore, an important question is under which
physical conditions can equilibrium be reached. This question has received much attention in
glasses, see [17, 18] for recent theoretical and [12, 19, 20] for recent experimental examples.
Understanding this point must come before the more complicated questions relating to an
eventual ageing behaviour can be addressed.

6 Originally, we became interested in this problem through the consideration of the fragmentation of microscopic
systems such as atomic nuclei where it has often been assumed that the detected fragments are at thermodynamic
equilibrium and fixed temperature [14]. However, such descriptions do not take care of the time evolution of these
systems which expand in space over a finite time interval and cool down before they are detected.
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In order to obtain explicit analytical results, we shall study the exactly solvable
kinetic spherical model with a time-dependent bath temperature, to be defined precisely in
section 2. For constant temperatures, this model has been studied in great detail in the past,
either in the context of continuum field theories [9, 21–25] or else in the form of a lattice model
[8, 10, 26–30]. It is well established that the spherical model, despite its technical simplicity,
still contains the main physical features encountered in other systems (such as the Ising model)
which might be considered to be closer to the experimental reality but which no longer permit
an exact analytical solution. In particular, the results found from the spherical model in d < 4
space dimensions are known to be different from the predictions of mean-field theory. In this
paper, we shall be concerned exclusively with the question of under what conditions a stationary
or quasi-stationary state of the model may be considered to be an equilibrium state in the sense
that X(t, s) = 1. This question can be studied by restricting attention to the high-temperature
phase such that the system is brought into contact with a heat bath at the initial temperature T0.
The heat bath then cools down to the final temperature T1 such that both are above the critical
temperature, namely T0 > T1 > Tc > 0 and the model remains in the disordered high-
temperature phase. In this phase, there is no ageing behaviour to be expected. We leave the
question of a possible ageing behaviour in systems coupled to a time-dependent bath for future
work.

The content of the paper is as follows. In section 2 we introduce the model and obtain the
formal exact solution. The equal-time correlator is analysed in section 3 and we discuss several
new non-trivial time and length scales which arise. Two-time quantities and the fluctuation–
dissipation ratio are studied in section 4 and the results are generalized to include the clamped
case in section 5. Section 6 presents our conclusions.

2. Model and formalism

We begin by recalling the definition of the kinetic spherical model, using the formalism as
exposed in [8, 26, 28]. We consider a system of time-dependent classical spin variables Sx(t)

located on the sites x of a d-dimensional hypercubic lattice. They may take arbitrary real
values subject only to the spherical constraint∑

x

Sx(t)2 = N (2.1)

where N is the number of sites of the lattice. The spherical model Hamiltonian reads

H = −J
∑
〈x,y〉

Sx(t)Sy(t) (2.2)

where the sum extends over nearest-neighbour pairs only. In the following we choose units
such that J = 1. The system is supposed to be translation invariant in all directions. The
kinetics is assumed to be described in terms of a Langevin equation

dSx(t)

dt
=

∑
y(x)

Sy(t) − (2d + z(t))Sx(t) + ηx(t) (2.3)

where the sum over y extends over the nearest neighbours of x and ηx(t) corresponds to a
stochastic force which describes the action of an environment which lies outside the nearest-
neighbour range. Physically, this means that the model is assumed to be immersed in a heat
bath. The resulting forces are supposed to be Gaussian and thus to be characterized by an
ensemble average which is zero, namely 〈ηx(t)〉 = 0, and a second moment which reads

〈ηx(t)ηy(t ′)〉 = 2T (t)δx,yδ(t − t ′). (2.4)



1252 A Picone et al

At time t = 0 the system is brought into contact with the heat bath. We assume in this work
that the temperature of the heat bath decreases from T0 to T1 with a characteristic relaxation
time τ according to

T (t) = T1 + (T0 − T1) exp(−t/τ ). (2.5)

The choice of this temporal behaviour is dictated by computational simplicity. In addition,
as we shall see, it already contains the basic effects which will also be present for more
general thermal histories. For sufficiently large values of the initial bath temperature T0, the
typical correlation lengths are of the order of a lattice constant or less. Then for all practical
purposes, the system is effectively uncorrelated. Finally, the function z(t) is fixed by the
spherical constraint (2.1) and has to be determined. In order to do this, we follow the standard
procedure of replacing the spherical constraint by its mean value. It can be shown that this
does not change the results if the infinite-system limit N → ∞ is taken before the long-time
limit t → ∞ [30].

By a Fourier transformation

f̃ (q) =
∑

r

fr e−iq·r fr = (2π)−d

∫
B

dqf̃ (q) eiq·r (2.6)

where the integral is taken over the first Brillouin zoneB, the Fourier-transformed spin variable
S̃(q, t) becomes

S̃(q, t) = e−ω(q)t

√
g(t)

[
S̃(q, 0) +

∫ t

0
dt ′ eω(q)t ′

√
g(t ′)η̃(q, t ′)

]
(2.7)

with the dispersion relation

ω(q) = 2
d∑

i=1

(1 − cos(qi)) (2.8)

and we have also defined

g(t) = exp

(
2

∫ t

0
dt ′z(t ′)

)
. (2.9)

Clearly, the time-dependence of S̃(q, t) and any correlators will be given in terms of the
function g = g(t).

We now derive the expressions for the correlators and response functions for an arbitrary
thermal history T = T (t). We begin with the equal-time spin–spin correlation function

Cx,y(t) = Cx−y(t) = 〈Sx(t)Sy(t)〉. (2.10)

We obtain the Fourier transform C̃(q, t) from

〈S̃(q, t)S̃(q′, t ′)〉 = (2π)dδ(q + q′)C̃(q, t) (2.11)

and immediately find

C̃(q, t) = e−2ω(q)t

g(t)

[
C̃(q, 0) + 2

∫ t

0
dt ′ T (t ′) e2ω(q)t ′g(t ′)

]
. (2.12)

If we assume uncorrelated initial conditions7

Cx,y(0) = δx−y,0 (2.13)

7 The treatment of correlated initial conditions, following the lines of [8], presents no additional difficulty.
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as we shall always do in the following, we have C̃(q, 0) = 1. Because of the spherical
constraint (2.2) and spatial translation invariance, the autocorrelator must satisfy

C0(t) =
∫
B

dq C̃(q, t) = 〈Sx(t)2〉 = 1. (2.14)

This in turn fixes z(t) or via (2.9) the function g(t) as the solution of a Volterra integral equation

g(t) = f (t) + 2
∫ t

0
dt ′ T (t ′)f (t − t ′)g(t ′) (2.15)

where

f (t) = 1

(2π)d

∫
B

dq e−2ω(q)t = (e−4t I0(4t))d (2.16)

and I0 is a modified Bessel function [31]. Once we have found the solution of equation (2.15),
the correlation function can be obtained.

Before doing this, we now give the expression for the two-time correlation function
Cx−y(t, s) = 〈Sx(t)Sy(s)〉 and the two-time response function Rx(t, s). The calculation
follows entirely the standard lines [8, 26, 28] and we merely quote the result. In Fourier space

C̃(q, t, s) = C̃(q, s) e−ω(q)(t−s)

√
g(s)

g(t)
(2.17)

and where g = g(t) is the solution of equation (2.15). Similarly, the response function
is obtained in the usual way [8, 23, 24, 26, 28] by adding a small magnetic field term
δH = −∑

x hx(t)Sx(t) to the Hamiltonian. We easily find in Fourier space

R̃(q, t, s) = δ〈S̃(q, t)〉
δh̃(q, s)

∣∣∣∣
hr=0

= e−ω(q)(t−s)

√
g(s)

g(t)
. (2.18)

From these expressions, the autocorrelation function C(t, s) = C0(t, s) and the autoresponse
function R(t, s) = R0(t, s) can be obtained by integrating over the momentum q.

Summarizing, the physically interesting correlation and response functions are given by
equations (2.12), (2.17) and (2.18) together with the constraint equation (2.15), for any time-
dependent temperature T = T (t). This constitutes the main result of the general formalism.

In order to solve equation (2.15) explicitly, we now use the specific form (2.5) of the
time-dependent temperature T = T (t). Through a Laplace transformation

f̄ (p) =
∫ ∞

0
dtf (t) e−pt (2.19)

equation (2.15) is transformed into a linear difference equation

ḡ(p) = f̄ (p) + 2T1f̄ (p)ḡ(p) + 2(T0 − T1)f̄ (p)ḡ(p + 1/τ). (2.20)

The analytic solution of this equation allows us to study the behaviour of the correlation
and response functions defined above. Two limit cases correspond to constant temperatures
and have been analysed in detail in the literature [28]. First, in the limit τ → ∞, we
have a constant temperature T = T0 and the final temperature T1 is never reached. Second,
the limit τ → 0 corresponds to an infinitely rapid quench to the constant end temperature
T = T1. We are interested in the behaviour between these two extremes. The solution ḡ(p) of
equation (2.20) can be cast in the form

ḡ(p) =
∞∑

n=0

(T0 − T1)
nḡn(p) (2.21)
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where

ḡn(p) = 2n

n∏
k=0

ḡ(0)

(
T1, p +

k

τ

)
. (2.22)

Here ḡ(0) (T1, p) is the solution as given by Godrèche and Luck [28] for a fixed temperature
T = T1

ḡ(0)(T1, p) = f̄ (p)

1 − 2T1f̄ (p)
. (2.23)

In the next section we shall turn to a detailed analysis of the properties of the physical
observables coming from this solution.

3. The equal-time correlator

We now analyse the long-time behaviour of the equal-time spin–spin correlation function Cx(t)

or rather its Fourier transform C̃(q, t). Throughout this paper, we shall restrict ourselves to
the situation where both the initial temperature T0 and the final temperature T1 are above the
critical point and the systems are cooled from T0 to T1, namely

T0 > T1 > Tc. (3.1)

The equilibrium critical temperature is given by Tc = (2f̄ (0))−1, see [25, 26, 28], and is
nonzero for d > 2. As we have seen in the last section, the time-dependence of the correlators
follows from the form of the function g(t). In turn, the behaviour of g(t) can be described
in terms of the singularities of its Laplace transform ḡ(p). From equations (2.21) and (2.22),
these singularities are entirely given in terms of the singularities of the constant-temperature
solution ḡ(0)(T1, p) of equation (2.23).

In the high-temperature phase, the singularities of g(0)(T1, t) can be analysed as follows
[28]. Consider the function

f̄ (p) = 1

(2π)d

∫
B

dq
1

p + 2ω(q)
(3.2)

which is monotonically decreasing with p. Furthermore, f̄ (p) is analytic in the complex
p-plane except for a cut in the interval −8d � p � 0. On the other hand, if T1 � Tc,
the function ḡ(0)(T1, p) has a simple pole at a value p0 given by f̄ (p0) = 1/(2T1). This
translates into an exponential long-time behaviour of g(0)(T1, t) ∼ exp(t/τeq) which defines
an equilibration time

τeq := τeq(T1) = τ0 = 1

p0
. (3.3)

Now, for a time-dependent temperature T = T (t), the only possible singularities of ḡ(p)

are those of ḡ(0)(T1, p + k/τ) and therefore the singularities of ḡ(p) with a positive real part
are simple poles and occur at

pk := p0 − k

τ
(3.4)

with k = 0, 1, 2, . . . , kmax. Here kmax is the largest integer such that pkmax is still positive. For
k > kmax, the singularities merely lead to exponentially decreasing corrections in g(t) and do
not contribute to the leading long-time behaviour we are interested in. The sequence of poles
pk leads to the following sequence of relaxation times:

1

τk(T1)
= 1

τeq(T1)
− k

τ
. (3.5)
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The quantities pk are positive for 0 � k � kmax and negative for k > kmax. Hence for t
sufficiently large, i.e. t � τeq(T1), the leading contributions to g(t) are of the form

g(t) 

kmax∑
k=0

Gk exp(t/τk) (3.6)

where

Gk = γ

∞∑
n=0

2n(T0 − T1)
n

n∏
j=0,j �=k

ḡ(0)(T1, p0 + (j − k)/τ) (3.7)

and in addition

γ = −f̄ (p0)
2/f̄

′
(p0) (3.8)

is a positive constant and the prime denotes the derivative.
Using expression (3.6) the spin–spin correlation function given by equation (2.12) takes

the following form:

C̃(q, t) 
 T1

(
kmax∑
k=0

Gk exp(−kt/τ )

)−1 [
G0

ω(q) + λ−2
eq

+
kmax∑
	=1

H	

ω(q) + λ−2
	

e−	t/τ

+
T0 − T1

T1

Gkmax

ω(q) − λ−2
kmax+1

e−(kmax+1)t/τ

]
+ O(e−2ω(q)t ) (3.9)

provided t � τeq(T1) and where for all 0 � 	 � kmax + 1 we have defined

λ	 = +
√

2|τ	| =
∣∣∣∣ 2τeq(T1)τ

τ − 	τeq(T1)

∣∣∣∣
1/2

. (3.10)

In the following, we shall use the relation λeq = λ0 = √
2τeq. In addition, we also used the

abbreviation

Hk = Gk +
T0 − T1

T1
Gk−1. (3.11)

In order to understand the behaviour of C̃(q, t), we note that the first term in
equation (3.9), which formally corresponds to 	 = 0, gives the stationary contribution. In
addition, there is at least one additional transient term which will disappear in the limit t � τ .
The number of transient terms which are present depends on the value of kmax = kmax(T1, τ ).
We now discuss the various physical cases which can arise.

3.1. First-mode contribution—short thermal relaxation times

The simplest case arises if τeq � τ , that is the bath relaxes faster than the system itself. Then
p0 − 1

τ
� 0, that is kmax = 0 and we have in equation (3.9) 	 = 0 as the only contributing

mode. Therefore (assuming t > τ and t � τeq(T1))

C̃(q, t) 
 T1

(
1

ω(q) + λ−2
eq (T1)

+
(T0 − T1)

T1

e−t/τ

ω(q) − λ−2
1

)
+ O(e−2ω(q)t−t/τ ). (3.12)

For a physical understanding, it might be more appealing to consider the correlator in real
space. In the 1D case, the result is particularly simple and in the large-separation limit |x| � 1
becomes

Cx(t) 
 T1

(
λ0 e−|x|/λ0 − T0 − T1

T1
λ1 sin

( |x|
λ1

)
e−t/τ

)
+ O

(
e−x2/t e−t/τ

)
. (3.13)
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Tc
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III

Figure 1. Kinetic phase diagram of the 3D spherical model with a time-dependent temperature as
given by equation (2.5). The lines shown are the loci where the relaxation times τ	, 	 = 1, 2, 3,
diverge. The dotted line marked Tc gives the equilibrium critical point and the regions I, II and III
are those with kmax = 0, 1, 2, respectively.

Therefore, the correlator is the sum of a stationary and spatially homogeneous term and a
transient term which in addition shows spatial oscillations of wavelength λ1. We point out
that λ1 diverges when the external time scale τ approaches the internal equilibration time τeq

from below, see equation (3.10). In figure 1 we show the location of the line τeq = τ as the
curve 1/τ1 = 0 in the (T1, τ )-plane. The region I in figure 1 corresponds to the case kmax = 0.

For larger values of τ we go over to a multimode regime which we discuss below.

3.2. Multimode contributions

If kmax > 0 several transient modes contribute to C̃(q, t). Their contributions are quite
different, however. The propagator arising in all terms is of the form

1

ω(q) ± λ−2
k

q→0
 1

q2 ± λ−2
k

(3.14)

with a positive sign for k � kmax and a negative sign for k = kmax + 1. This leads to a different
spatial behaviour, in analogy with equation (3.13) found for the case kmax = 0 discussed
above. The first kmax terms all lead to spatially decaying contributions to Cx(t) in the large-|x|
limit, where the characteristic length scale is given by λ	 with 	 = 0, 1, . . . , kmax. With the
exception of the 	 = 0 contribution, all terms are transient and decay with a relaxation time
given by τ/	. In contrast, the last term, which is also transient, gives rises to a spatially
oscillating term with a wavelength λosc := λkmax+1.

The behaviour of the system in the first few regimes is illustrated in figure 1. For a fixed
final temperature T1 and increasing values of the external relaxation time τ , the system goes
over from region I with only a single mode (since kmax = 0) to region II with two modes, later
to region III with three modes and so on.

The behaviour of the various correlations and wavelengths is illustrated in figure 2 for
the 3D case and for τeq = 0.4, that is T1 = 3.8363 . . . . First, we note that the characteristic
length scale λeq associated with the only non-transient term does not depend on the externally
imposed time scale τ . Second, the thick solid lines show the dependence of the oscillation
wavelength λosc = λkmax+1 on τ . If we start with a small value of τ in region I and then increase
τ, λosc increases and finally diverges when τ = τeq, that is, when the external time scale
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0 0.5 1
0

1

2

λ

I II III

λeq

λ1 λ2

τ

Figure 2. Dependence of some correlations and wavelengths λ	 on the external relaxation time
τ , at fixed final temperature T1 = 3.8363 . . . in the 3D spherical model. The regions I, II, III
correspond to the cases kmax = 0, 1, 2, respectively. The thick solid lines give the oscillation
wavelength λosc = λkmax+1. The dash-dotted lines give the equilibration length scale λeq = λ0
(the equilibration time τeq ∼ λ2

eq) and the first additional length scales λ1 and λ2. The dashed line

corresponds to the curve λ = √
2τ , see the text.

becomes equal to the internal equilibration time scale. If τ is now increased further, we enter
region II. At this point, the previous oscillating mode transforms into a spatially monotonic
one which simply gives another contribution which decreases as a function of |x| and in
addition, a new oscillating mode with a finite wavelength appears. This new mode arises since
one of the modes which in region I leads to an exponentially decaying contribution to g(t)

transforms itself into an, albeit non-leading, exponentially growing contribution. Furthermore,
the characteristic length of the old oscillating mode (denoted by λ1 in figure 2) now decreases
as a function of τ . We now increase τ further until the oscillation wavelength λosc diverges
again and we therefore go over from region II into region III. At this transition point, we
observe that the value of λ1 agrees with that of the new oscillation wavelength for region III.
Phenomenologically, this looks as if that mode would split into two modes, one giving rise to
a spatially oscillating contribution to Cx(t) and the other to a spatially decaying term. This
splitting occurs along the line λ = √

2τ and in particular, it follows that the oscillation length
always satisfies λosc �

√
2τ .

4. Two-time correlation and response functions

Using the expression of the function g(t) from equation (3.6), we can formally compute
the two-time observables we are interested in, that is the two-time autocorrelation function
and the autoresponse function defined in equations (2.17) and (2.18). In particular, a study of
these two functions allows us to calculate the fluctuation–dissipation ratio X(t, s). A deviation
of this ratio from unity should signal a departure from thermodynamic equilibrium. For a
sudden quench to a final temperature T1 this question has already been studied [28] and it
was shown that indeed X(t, s) = 1 in the long-time limit in the high-temperature phase when
T1 > Tc. Here, with the additional complication of a time-dependent heat bath temperature,
we must first define an instantaneous time-dependent temperature of the system in order to
make the criterion of the fluctuation–dissipation ratio applicable. We choose the equilibrium
part C̃eq of the single-time correlator as the physical quantity which measures a temperature.
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Consider for a moment the case of a fixed temperature T. The equilibrium part behaves for
small momenta (or large distances) as

lim
q→0

C̃eq(q) = lim
q→0

T

ω(q) + λ−2
eq

= 2τeqT (4.1)

and depends on T in a known way. Therefore, we use the extension of this relation to define,
for a time-dependent bath temperature T (t) varying according to equation (2.5), an effective
temperature Teff(s) of the spin system. Taking the explicit form (3.9) of the single-time
propagator C̃(q, s) we set

lim
q→0

C̃(q, s) = 2τeq(T1)Teff(s) (4.2)

which is the defining equation for the effective time-dependent temperature Teff(s). It remains
to be seen whether this Teff can play the role of a physical equilibrium temperature.

This can be seen by means of a comparison with the results obtained from an instantaneous
quench towards T1, hence τ = 0. For clarity, we shall denote by A(0) the result obtained for
an observable A, after a sudden quench with τ = 0 to the final temperature T1. The two-time
autocorrelation function C(0)(t, s) is explicitly given in equation (2.58) of [28]. In particular,
it is known that [28] limq→0 C̃(0)(q, s) = 2τeq(T1)T1.

We now consider the two-time autocorrelation function C(t, s). From section 2, we have

C(t, s) =
√

g(s)

g(t)

∫
dq C̃(q, s) e−ω(q)(t−s)



√

g(s)

g(t)

∫
dq C̃(0, s) e−q2(t−s)

=
√

g(s)

g(t)

∫
dq 2τeq(T1)Teff(s) e−q2(t−s)

=
√

g(s)

g(t)

∫
dq

Teff(s)

T1
C̃(0)(0, s) e−q2(t−s)


 Teff(s)

T1
k(0)(t, s)C(0)(t, s). (4.3)

In the second and the fifth lines we used the fact that we are in the regime t − s � 1,
in combination with the fact that in this limit, only the low-q behaviour of C(t, s) and of
C(0)(t, s) really contributes. In the fourth line, the definition of Teff(s) was used. For brevity,
we have set

k(0)(t, s) =
√

g(s)/g(0)(s)

g(t)/g(0)(t)
(4.4)

where the Laplace transform of g(0)(t) was given in (2.23). The exact autoresponse function
is given by

R(t, s) =
∫

dq R̃(q, t, s) = f

(
t − s

2

)√
g(s)

g(t)
= R(0)(t, s)k(0)(t, s). (4.5)

We now ask whether the quasi-equilibrium temperature Teff(s) so defined is really the
temperature of a system in equilibrium. A convenient way to test this is through the fluctuation–
dissipation ratio
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X(t, s) = Teff(s)R(t, s)

(
∂C(t, s)

∂s

)−1

. (4.6)

An equilibrium situation can only be recovered if X(t, s) = 1. We now bring this expression
into a simpler form as follows:

1

X(t, s)
= ∂C(t, s)/∂s

Teff(s)R(t, s)

= 1

Teff(s)

C(t, s)

R(t, s)

∂C(t, s)/∂s

C(t, s)


 1

Teff(s)

C(0)(t, s)Teff(s)T
−1

1 k(0)(t, s)

R(0)(t, s)k(0)(t, s)

∂

∂s
ln C(t, s)

= 1

T1

C(0)(t, s)

R(0)(t, s)

∂

∂s
ln C(t, s)



(

∂

∂s
ln C(t, s)

) (
∂

∂s
ln C(0)(t, s)

)−1

. (4.7)

In performing this calculation, we used in the third line the approximate expressions (4.3)
and (4.5) valid for t − s � τeq(T1) and in the last line, we used the fact that the fluctuation–
dissipation theorem holds for any instantaneous quench to the final temperature T1 > Tc

[28].
After some algebra, we can write this in a compact form, taking also the t → ∞ limit

X(t, s) =
[
1 +

τeq

τ



( s

τ

)]−1
. (4.8)

Remarkably, this scaling form only depends on the single scaling variable x = s/τ > 1. The
associated scaling function reads


(x) =
(

∂

∂x
ln 
1(x) + 2

∂

∂x
ln 
2(x)

)
(4.9)

where explicitly


1(x) =
kmax∑
k=0

Gk

G0
e−kx (4.10)


2(x) = T1

[
kmax∑
	=0

G	 e−	x

]−1 [
G0λ

2
eq +

T0 − T1

T1
Gkmaxλ

2
kmax+1 e−(kmax+1)x +

kmax∑
k=1

Hkλ
2
k e−kx

]
.

(4.11)

A particularly simple form is found for kmax = 0. Physically, this corresponds to the
situation when τ � τeq(T1). Then the fluctuation–dissipation ratio reads

X(t, s) =
[

1 + 2
τeq

τ

(
λ2

0T1

λ2
1(T0 − T1)

exp(x) − 1

)−1
]−1

x = s

τ
. (4.12)

As in the case of an infinitely rapid quench, the fluctuation–dissipation ratio is unity, up to
corrections which vanish exponentially fast in the long-time limit. We can conclude that the
system evolves towards thermodynamic equilibrium.
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5. The clamped case and the limit τ/τeq(T0) → ∞
Studying the kinetics with a time-dependent temperature and in the disordered phase, we may
identify the following time regimes:

1. τ � τeq(T1). This case formally corresponds to kmax = 0. Studying the long-time
kinetics, we always work in the situation where t � τeq(T1) � τ . Up to exponentially
small corrections, we recover an equilibrium dynamics as found for an infinitely rapid
quench [28].

2. τ 
 τeq(T1). In this case, we consider t � τeq(T0) and also t � τ . This regime
corresponds to a finite nonzero value of kmax. With respect to the situation of an infinitely
rapid quench, there are several new exponentially small contributions which arise, as was
shown in section 4. As expected, equilibrium dynamics is recovered.

3. τ � τeq(T1). This is called the clamped regime8 because the microscopic degrees of
freedom follow the varying temperature of the external heat bath. Certainly, for times
t � τ � τeq(T0) we shall simply recover equilibrium dynamics, along the lines of
section 4. Because we consider only quenches which reduce the temperature T0 > T1 > Tc

throughout, we always have τeq(T1) > τeq(T0). On the other hand, new and interesting
long-time behaviour occurs in the regime τeq(T0) � t � τ . In this case, the system is in
equilibrium as far as the internal degrees of freedom are concerned, since t � τeq(T0),
but has not yet equilibrated with respect to the external time scale of the heat bath, since
t � τ . (A special case of the case under consideration here corresponds to kmax = ∞.)

We first have to look closer at the limit τ → ∞. As we have seen above, the central part of
the calculation is the solution of the Volterra integral equation (2.15) coming from the spherical
constraint. However, for τ → ∞ and after having performed the Laplace transformation, we
may expand in 1/τ and then obtain to leading order an ordinary differential equation

dḡ(p)

dp
+ τa(p)ḡ(p) = τb(p) (5.1)

where

a(p) = 2T0f̄ (p) − 1

2(T0 − T1)f̄ (p)
b(p) = −1

2

1

T0 − T1
. (5.2)

Although this equation may be solved straightforwardly through integrations, it is for our
purposes more useful to proceed differently. After all, we are merely interested in the large-
time (or small-p) behaviour of the correlators. In addition, because of the τ → ∞ limit
implicit in equation (5.1), we must take the limit in such a way that τa(p) remains finite.
Therefore, we merely need a(p) in the vicinity of pc defined by a(pc) = 0.9 The leading
long-time behaviour should then be given by an expansion in powers of p − pc. We write,
using (5.2)

a(p) 
 �(p − pc) + · · · � = 2T 2
0

T0 − T1

df̄ (p)

dp

∣∣∣∣
p=pc

< 0. (5.3)

We look for a solution of (5.1) of the form

ḡ(p) =
∞∑

n=0

τ−nḡn(p) (5.4)

8 En français: serré; auf deutsch: eingeklemmt.
9 Physically, one may understand this by noting that in the case of constant temperature T0, τ is formally infinite and
we should have to leading order ḡ(T0, p) = b(p)/a(p). Therefore, the root pc sets the entire physical behaviour, up
to normalization factors.
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and we directly obtain

ḡn(p) = b

�

(
2

�

)n
�(n + 1/2)

�(1/2)
(p − pc)

−2n−1. (5.5)

In order to perform the inverse Laplace transformation, we write

ḡ(p) =
∞∑

n=0

τ−n

∫ ∞

0
dt gn(t) e−pt =

∞∑
n=0

∫ ∞

0
dt

b

�

(
t2

2τ�

)n
1

n!
e−(p−pc)t . (5.6)

At this stage the sum may be performed first and we find

g(t) =
∞∑

n=0

gn(t) epct = b

�
exp

(
pct − t2

τ 2
eff

)
(5.7)

which is valid provided t � τ . In this expression, τeff is the typical time after which the
function g and then the correlators which are closely related to it differ notably from the
expressions they take at formally infinite external relaxation time τ . We find

τeff = √−2τ� =
√

2τ
2T 2

0

T0 − T1

∣∣∣∣df̄ (p)

dp

∣∣∣∣
p=pc

. (5.8)

Remarkably enough, τeff differs from the external time τext = τ . Rather, it is the geometric
mean between the externally imposed relaxation time scale as measured by τ and an internal
time scale, measured by τdep = 2�(T0, T1). In the physical observables, τeff appears as
a natural time scale informing on the departure from an effectively constant temperature
T = T0. We point out that this new time scale τdep is distinct from the equilibration time at
temperature T0, namely τeq(T0) = 1/pc.

For example, the two-time response function becomes

R(t, s) = R(0)(t, s) exp

(
− (t − s)(t + s)

4τ |�|
)

(5.9)

which illustrates again the role of τeff in the description of the deviation with respect to
R(0)(t, s).

We now comment on how these results depend on spatial dimensionality d. From
equation (5.8), we directly see that τeff diverges when T0 and T1 get closer to each other.
Far from the critical region, we have τeff 
 (T0 − T1)

−1/2, independently of d. On the other
hand, when the system enters the critical region, results depend on whether fluctuations are
strong as is the case for 2 < d < 4 or whether one has mean-field criticality when d > 4. In
the fluctuation-dominated regime, that is 2 < d < 4, the first derivative of f̄ (p) diverges as p
goes to zero. Using the known small-p expansion of f̄ [28, 32, 33], we find

τeff 

[
T1 − Tc

Tc

]− 4−d
2(d−2)

(T0 − T1)
−1/2. (5.10)

On the other hand, in the mean-field regime d > 4, the first derivative of f̄ (p) remains bounded
even in the neighbourhood of the critical point. Then we simply retain τeff 
 (T0 − T1)

−1/2.
For 2 < d < 4, we have thus found a rather counterintuitive effect. Namely, the time

scale τeff up to which the system evolves as if the temperature were fixed at T0, increases when
the final temperature T1 approaches the critical temperature Tc. This enhancement of τeff is
absent for d > 4 and must therefore be related to the presence of strong fluctuation effects
close to Tc and below the upper critical dimension.

Finally, we consider the two-time observables and the fluctuation–dissipation ratio. We
have just seen that for τ large, the kinetics of the system occurs at an infinitesimally slow rate
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for a long time. In contrast to the treatment of section 4, it is therefore useful to compare
the time-evolving quantities with those when formally τ = ∞ or, in physical terms, when
the temperature remains fixed at T0. Formally, the calculations can be done by analogy
with section 4. First, we use the single-time correlator to define an effective time-evolving
temperature Teff(s) from the relationship

lim
q→0

C̃(q, s) = 2τeq(T0)Teff(s). (5.11)

We shall denote by A(∞) the result obtained for an observable A with a time evolution governed
by an infinitely long external time τ = ∞. In particular, we have limq→0 C̃(∞)(q, s) =
2T0τeq(T0). As in section 4, it is easy to see that

C(t, s) = Teff(s)

T0
k(∞)(t, s)C(∞)(t, s) k(∞)(t, s) =

√
g(s)/g(∞)(s)

g(t)/g(∞)(t)
(5.12)

where g(∞)(t) is again the solution of the spherical constraint (2.15) but now for τ = ∞ and
therefore T1 is replaced by T0.

We now want to find Teff(s) explicitly. Using the general expressions for the single-time
correlator C̃(q, t) from section 2, the explicit form of g(t) found above and taking the limit
q → 0, we obtain

Teff(s) = � exp
(−pcs + s2

/
τ 2

eff

)
2τeq(T0)b

[
1 +

2b

�

∫ s

0
dt1 exp

(
pct1− t2

1

τ 2
eff

)
(T1 + (T0 − T1) e−t1/τ )

]
.

(5.13)

Now, we consider times s which satisfy
s

|�| � τ

τeq(T0)
. (5.14)

From the explicit form of �, it is clear that this condition is the easier to satisfy the closer T0

is to T1, even if both are far from the critical point Tc. We then obtain

Teff(s) = � e−pcs

2bτeq(T0)

[
1 +

2b

�
T1p

−1
c epcs +

2b

�
(T0 − T1)

e(pc−1/τ)s

pc − 1/τ
+ O(e−pcs )

]
= T (s) (5.15)

where in the last step we used that τ � τeq(T0) or equivalently that pc � 1/τ , and we recall
the definition f̄ (pc) = 1/T0. Therefore, we see that under the stated conditions, the effective
temperature is equal to the temperature of the external heat bath. This nicely confirms that our
definition of Teff(s) is a natural one.

Physically, this result illustrates the (expected) applicability of the adiabatic approximation
to equal-time two-point correlators. Namely, we have seen that in the limit τ � τeq(T0), the
effective temperature Teff(s) equals the bath temperature T (s) and the equal-time two-point
correlators are those of a quasi-equilibrium system.

Lastly, we examine to what extent this heuristic expectation concerning equal-time
correlators carries over to two-time quantities. First, in an analogous manner to section 4,
the two-time response function reads

R(t, s) = f

(
t − s

2

) √
g(s)

g(t)
= R(∞)(t, s)k(∞)(t, s). (5.16)

Then, we can easily compute the fluctuation–dissipation ratio X(t, s). Formally, it is again
defined by (4.6) and we find as before

1

X(t, s)
=

(
∂

∂s
ln C(t, s)

) (
∂

∂s
ln C(∞)(t, s)

)−1

(5.17)
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and this holds provided t − s � τeq(T0). In the adiabatic regime just studied, we have

C(t, s) = T (s)

T0
e(s2−t2)/τ 2

eff C(∞)(t, s) (5.18)

and the fluctuation–dissipation ratio becomes

1

X(t, s)
=

(
∂

∂s
ln

T (s)

T0
+

2s

τ 2
eff

+
1

2τeq(T0)

)
2τeq(T0)

= 1 − 2s

�

τeq(T0)

τ
− 2

τeq(T0)

τ

(T0 − T1) e−s/τ

T1 + (T0 − T1) e−s/τ


 1 − 2
τeq(T0)

τ

T0 − T1

T0
(5.19)

where the last relation is valid provided s � τ and where condition (5.14) was used.
For an equilibrium system, it is well known that X(t, s) = 1 for all times s < t from

the fluctuation–dissipation theorem. Here, we find an intermediate regime τeq(T0) � s � τ

such that X(t, s) reaches a plateau value which is different from unity. Still, the adiabatic
approximation remains valid, up to small corrections in s/τ . However, the fact that for s � τ

the difference X(t, s)−1 is finite (albeit it may numerically be small) shows that the validity of
the fluctuation–dissipation relation is independent of, and more restrictive than, the adiabatic
approximation.

Of course, for s � τ � τeq(T0) the fluctuation–dissipation theorem will be recovered.
In other words, equation (5.19) shows that the equilibration s � τeq(T0) with respect to the
internal degrees of freedom is already enough to reproduce the fluctuation–dissipation theorem
to a good approximation while it becomes exact when equilibration with respect to the bath,
s � τ , is also achieved.

6. Conclusions

We have studied how the non-equilibrium kinetics of a simple ferromagnet is modified when
the system is not instantaneously quenched to a final temperature T1 but brought into contact
with a heat bath starting at an initial temperature T0 such that the approach towards T1 is
described by a finite external relaxation time τ , according to (1.1). More general temperature
histories T (t) of the heat bath can be decomposed into sums of exponentials via Laplace
transformations. Then the physically interesting long-time behaviour will be governed by
the largest relaxation time arising in the Laplace spectrum. We have studied as an example
the exactly solvable spherical model in order to get physical insight into the role of a finite
value of τ . We have concentrated on the high-temperature phase such that T0 > T1 > Tc,
generalizing previous studies [25–29] with τ = 0.

Our results can be summarized as follows:

1. If τ is smaller than or at most of the same order of magnitude as the internal relaxation
or equilibration time τint = τeq, then for times large compared to τ, τeq the system
approaches exponentially fast the known stationary state, in agreement with what was
found previously for τ = 0 [25–29].

In addition, there are transient contributions to the spin–spin correlation function with
spatial oscillations on finite length scales λ. In particular, if τ � τeq, we find

λ−1 ∼
√

1

τ
− 1

τeq
. (6.1)



1264 A Picone et al

2. In this case, the stationary state is indeed in thermodynamic equilibrium and is reached
exponentially fast for times larger than τ . We have checked this through explicit
calculation of the fluctuation–dissipation ratio X(t, s) → 1 for late times.

3. A qualitatively different behaviour may be observed in the clamped case, where τ � τeq.
A common physical example with clamped degrees of freedom is a glass. A system in a

glass state remains out of equilibrium as attested by the fact that the fluctuation–dissipation
limit X∞ = lims→∞ limt→∞ X(t, s) �= 1 (experimentally, this has been studied recently
for the spin glass CdCr1.7In0.3S4 [19] and a colloidal glass [20]). This means that in a glass
different temperatures can be defined, depending on the way temperature is measured.
These phenomenological properties characteristic of a glass can be partially reproduced
in our simple model, even though we did not introduce disorder into the Hamiltonian.

Specifically, we have shown, in the setting of the kinetic spherical model, that in the
clamped case

(a) the effective time-dependent temperature Teff(t) as defined in equation (5.11) from
the equal-time spin–spin correlator agrees with the external bath temperature T (t)

for times larger than τeq.
(b) the time-evolution of two-time observables is governed by the initial temperature T0

for times up to the new time scale (if 2 < d < 4)

τeff ∼
(

T1 − Tc

Tc

)−(4−d)/(2(d−2))

(T0 − T1)
−1/2 (6.2)

distinct from both τeq and τ and much larger than τ if T1 is close to criticality.
Remarkably, τeff = √

ττdep is the geometric mean of τ and the purely internal time
scale τdep �= τ , see (5.8). Here the temporal evolution of the two-time observables is
delayed with respect to the evolution of the bath temperature T (t).

(c) there is an intermediate regime τeq(T0) � s � τ such that the system’s internal
degrees of freedom are in quasi-equilibrium while equilibrium is not yet achieved
with respect to the temporal evolution of the bath. Then we find that the model
reaches a quasi-stationary state, which however cannot be a quasi-equilibrium state,
since the fluctuation–dissipation ratio

X(t, s) =
(

1 − 2τeq(T0)

τ

T0 − T1

T0

)−1

(6.3)

takes on a value different from (albeit close to) unity in the regime τeq(T0) � s � τ .
In distinction to glasses, the plateau value (6.3) is only reached in the intermediate regime
τeq(T0) � s � τ , before the system relaxes to equilibrium for very large waiting times
s � τ .

We stress that the clamped case arises for τ large. At first sight, one might have naively
expected that if the bath temperature T (t) is slowly changed, the system might be able to
follow the evolution of the bath through a sequence of equilibrium states. Although our
explicit results are in agreement with the adiabatic approximations they also show that the
validity of the fluctuation–dissipation theorem depends on more than the validity of the
adiabatic picture. This observation might be of particular significance for the interpretation of
experimental studies on the time-evolution of cooling systems (our results only hold if both
the initial and final temperatures are in the disordered phase). Finally, it remains an open
question as to what happens when the ordered phase is entered. We hope to come back to this
problem in the future.

While our results were obtained in the framework of the spherical model, we expect that
the qualitative results, in particular those for when an equilibrium state can be reached, should
be of broader validity. Tests of this expectation in other systems would be of interest.
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[3] Bouchaud J P, Cugliandolo L F, Kurchan J and Mézard M 1998 Spin Glasses and Random Fields ed A P Young

(Singapore: World Scientific) (Preprint cond-mat/9702070)
[4] Cates M E and Evans M R (ed) 2000 Soft and Fragile Matter, Proc. 53rd Scottish University Summer Schools

in Physics (St. Andrews, Jul. 1999) (Bristol: Institute of Physics Publishing)
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